Adaptive control of Burgers' equation with unknown viscosity
نویسندگان
چکیده
In this paper, we propose a fortified boundary control law and an adaptation law for Burgers’ equation with unknown viscosity, where no a priori knowledge of a lower bound on viscosity is needed. This control law is decentralized, i.e., implementable without the need for central computer and wiring. Using the Lyapunov method, we prove that the closed-loop system, including the parameter estimator as a dynamic component, is globally H1 stable and well posed. Furthermore, we show that the state of the system is regulated to zero by developing an alternative to Barbalat’s Lemma which can not be used in the present situation.
منابع مشابه
Discussion on: ''Adaptive Boundary Control of the Forced Generalized Korteweg-de Vries-Burgers Equation''
This paper considers the adaptive control problem of the forced generalized Korteweg-de Vries-Burgers (GKdVB) equation when the spatial domain is [0,1]. Three different adaptive control laws are designed for the forced GKdVB equation when either the kinematic viscosity or the dynamic viscosity is unknown, or when both viscosities and are unknowns. The L -global exponential stability of the solu...
متن کاملAdaptive Stabilization of the Korteweg-de Vries-Burgers Equation with Unknown Dispersion
This paper studies the adaptive control problem of the Korteweg-de Vries-Burgers equation. Using the Lyapunov function method, we prove that the closed-loop system including the parameter estimator as a dynamic component is globally L2 stable. Furthermore, we show that the state of the system is regulated to zero by developing an alternative to Barbalat’s lemma which cannot be used in the prese...
متن کاملOptimal Control and Vanishing Viscosity for the Burgers Equation
We revisit an optimization strategy recently introduced by the authors to compute numerical approximations of minimizers for optimal control problems governed by scalar conservation laws in the presence of shocks. We focus on the one-dimensional (1-D) Burgers equation. This new descent strategy, called the alternating descent method, in the inviscid case, distinguishes and alternates descent di...
متن کاملNumerical solution of the one dimensional non-linear Burgers equation using the Adomian decomposition method and the comparison between the modified Local Crank-Nicolson method and the VIM exact solution
The Burgers’ equation is a simplified form of the Navier-Stokes equations that very well represents their non-linear features. In this paper, numerical methods of the Adomian decomposition and the Modified Crank – Nicholson, used for solving the one-dimensional Burgers’ equation, have been compared. These numerical methods have also been compared with the analytical method. In contrast to...
متن کاملRobust Adaptive Actuator Failure Compensation of MIMO Systems with Unknown State Delays
In this paper, a robust adaptive actuator failure compensation control scheme is proposed for a class of multi input multi output linear systems with unknown time-varying state delay and in the presence of unknown actuator failures and external disturbance. The adaptive controller structure is designed based on the SPR-Lyapunov approach to achieve the control objective under the specific assump...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001